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How do space and time relate m rhythmical tasks that reqmre the hmbs to move singly or together 
m various modes of coordination ? And what kind of minimal theoretical model could account for 
the observed data9 Ead~er findings for human cychcal movements were consistent w~th a nonhnear, 
limit cycle oscdlator model (Kelso, Holt, Rubm, & Kugler, 198 l) although no detailed modehng was 
performed at that Ume In the present study, lonemauc data were sampled at 200 samples/second, 
and a detmled analysis of movement amphtude, frequency, peak velooty, and relative phase (for the 
blmanual modes, m phase and anuphase) was performed As frequency was scaled from l to 6 Hz 
(m steps of l Hz) using a pacing metronome, amphtude dropped reversely and peak veiooty m- 
creased WRhm a frequency condmon, the movement's amphtude scaled &rectly with lls peak veloc- 
Ry These &verse lonematlc behaviors were modeled exphotly m terms oflow-&menslonal (nonhn- 
ear) dlsslpaUve dynamics, wRh hnear stiffness as the only control parameter Data and model are 
shown to compare favorably The abstract, dynamical model offers a umfied treatment of a number 
of fundamental aspects of movement coordination and control 

How do space and time relate m rhythmical tasks that require 
the hands to move singly or together in various modes of coordi- 
nation9 And what kind of minimal theoretical model could ac- 
count for the observed data? The present article addresses these 
fundamental questions that are of longstanding interest to ex- 
perimental psychology and movement science (e g ,  von Hoist, 
1937/1973; Scripture, 1899; Stetson & Bouman, 1935) It is 
well known, for example, that discrete and repetitive move- 
ments of different amplitude vary systematically in movement 
duration (provided accuracy requirements are held constant, 
e g,  Cralk, 1947a, 1947b) This and related facts were later for- 
mahzed into F~tts's Law (1954), a relation among movement 
time, movement amplitude, and target accuracy, whose under- 
pmnmgs have been extensively studied (and debated upon) 
quite recently (e g., Meyer, Smith, & Wright, 1982; Schmidt, 
Zelazmk, Hawkins, Frank, & Qulnn, 1979) 

In the present study, the accuracy of movement is neither 
fixed nor manipulated as in many investigations of Fitts's Law 
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Only frequency is scaled systematically and amphtude allowed 
to vary in a natural way Surprisingly, there has been little re- 
search on movements performed under these particular experi- 
mental conditions (see Freund, 1983) Feldman (1980) reported 
data from a subject who attempted to keep a m a x i m u m  ampli- 
tude (elbow angular displacement) as frequency was gradually 
increased to a limiting value (7 l Hz) An observed inverse rela- 
tion was accompanied by an Increasing tonic coactlvation of 
antagonistic muscles. In addition, the slope of the so-called "m- 
variant characteristic" (see also Asatryan & Feldman, 1965, 
Davis & Kelso, 1982)--a plot of joint torque versus joint  an- 
gle- increased with rhythmical rate, suggesting that natural 
frequency (or its dynamic equivalent, stiffness) was a controlla- 
ble parameter. Other studies have scaled frequency but fixed 
movement amphtude Their conclusions were similar to Feld- 
man's. Frequency changes over a range were accounted for by 
an increase in system stiffness (e g ,  Vlvlani, Sor & Ter- 
zuolo, 1976) 

Brooks and colleagues (e g,  Conrad & Brooks, 1974, see 
Brooks, 1979, for review) used a rather different paradigm for 
exploring spatiotemporal relations in cyclic movement pat- 
terns In several studies, monkeys produced rapid elbow 
flexions/extensions as they slammed a manlpulandum back 
and forth between mechanical stops (thus allowing no variation 
in amplitude) After a trmning period, the movement ampli- 
tudes were shortened artificially by bringing the stops closer to- 
gether The monkeys, however, continued to exert muscular 
control for the "same" length of time, pressing the handle 
against the stops when they would normally have produced 
larger amphtude movements. Because the original rhythm of 
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rap~d alterations established during training was maintained in 
the closer-stop condition, "the rhythm,  or some correlate of 
it" (Brooks, 1979, p. 23) was deemed to be centrally pro- 
grammed However, ~t is not at all clear how these findings or 
conclusions relate to situations m which subjects are not pre- 
vented from adjusting movement amplitude voluntarily m re- 
sponse to scalar increases in rate (see Schmldt, 1985). 

With regard to less confined experimental paradigms m 
which speech and handwriting have been studied, several inter- 
esting results have come to hght. As spealong rate ~s Increased, 
for example, the displacement of observed articulator move- 
ments ~s reduced (e.g., Kelso, Vataloons-Bateson, Saltzman, & 
Kay, 1985; Kent & Moll, 1972, Ostry & Munhall, 1985). The 
precise nature of the function relating these variables, however, 
is not known because only a few speaking rates have been em- 
ployed In such experiments In handwriting, It is well known 
that when the amplitude of  the produced letter is increased, 
movement duration remains approximately constant (e.g., Hol- 
lerbach, 1981; Katz, 1948; Vlvlanl & Terzuolo, 1980). This 
handwr~tang result Is theoretacally mterestang in at least two re- 
spects First, many interacting degrees of  freedom are revolved 
in writing a letter, be it large or small, yet quite simple lanematic 
relations are reproduclbly observed at the end effector Second, 
because the anatomy and bmmechanics are entirely different 
between writing on notepaper and on a blackboard, a rather 
abstract control structure is implicated. 

In the present article we offer a dynamical model that is en- 
tarely consistent with such an abstract control structure and that 
IS shown to reproduce observed space-tame relataons of  hmbs 
operating singly or together (in two specific modes of  coorchna- 
laon) quite nicely Moreover, exactly the same model can be ap- 
phed to transmons among coordinative modes of  hand move- 
ment (see below). The present dynamical model is not tied lo- 
caUy and concretely to the biomechanlcs ofthe musculoskeletal 
periphery Rather, the approach is consistent with an older v~ew 
of dynamics, namely, that it is the stmplest and most abstract 
description of  the motaon of  a system (Maxwell, 1877/1952, 
p 1). It is possible to use such abstract dynamics in complex 
multadegree of  freedom systems when structure or patterned 
forms ofmotaon arise (e.g., Haken, 1975, 1983). Such patterned 
regularities m space and time are characterized by low-dimen- 
sional dynamics whose variables are called order parameters 
One can imagine, for example, the high dimenslonallty in- 
volved m a simple finger movement were one to include a de- 
scnptaon of  participating neurons, muscles, vascular processes, 
and so forth, along with their interconnectaons. Yet in tasks 
such as pointing a finger, the whole ensemble cooperates in such 
a way that It can be described by a simple, damped mass-spring 
dynamics for the end effector position. Thus, under the particu- 
lar boundary condltmns set by the pointing task, end position 
and velocity are the order parameters that fully specify the coop- 
eratwe behavior of  the ensemble Such "compression," from a 
microscopic basis of  huge dimenslonality to a macroscopic, 
low-dimensional structure, is a general and predominant fea- 
ture of noneqmhbrmm, open systems (e.g., Haken, 1983). In 
the context of  movement, this reductaon of  degrees of  freedom 
is characterlstac of  a coordinative structure, namely, a func- 
tional grouping of  many neuromuscular components that are 

flexibly assembled as a single, functional unit (e g ,  Kelso, 
Tuller, Vatiklotls-Bateson, & Fowler, 1984). 

In earlier work (e g., Kelso, Holt, Kugler, & Turvey, 1980; 
Kugler, Kelso, & Turvey, 1980), we have identified such unitary 
ensembles--following Feldman (1966)--with the qualitative 
behavior of  a damped mass-spring system Such systems pos- 
sess a point attractor, that is, all trajectories converge to an as- 
ymptotic, static eqmhbrmm state Thus, the property of equt- 
finahty is exhibited, namely, a tendency to achieve an eqmhb- 
rmm state regardless ofmltaal conditions The control structure 
for such motion can be characterized by a set of  Ume-lndepen- 
dent dynamic parameters (e g ,  stiffness, damping, eqmhbrmm 
position), with lanematac variations (e g., position, velocity, ac- 
celeration over time) emerging as a consequence This dynami- 
cal model has received a broad base of  empirical support from 
studies of  single, discrete head movement (Blzzl, Poht, & Mo- 
rasso, 1976), l imb movement (e g., Cooke, 1980, Poht & Blzzl, 
1978; Schmldt & McGown, 1980) and finger-movement target- 
ing tasks (Kelso, 1977; Kelso & Holt, 1980) In addition, point 
attractor dynamics can be shown to apply not only to the mus- 
cle-joint level but also to the abstract, task level of description 
as well (see Saltzman & Kelso, 1987). That is, a dynamical de- 
scripUon Is appropriate at more than one "level." Strdang sup- 
port for this notion has been recently accumulated by Hogan 
and colleagues (see Hogan, 1985) In their work on postural 
maintenance of  the upper extremity, the well known "sprlng- 
hke" behavior of  a single muscle was shown to be a property of 
the entire neuromuscular system As Hogan (1985) notes,"  
despite the exqdent complexity of  the neuromuscular system, 
coordinative structures.  . go to some length to preserve the 
simple 'spring-like' behavmr of  the single muscle at the level of  
the complete neuromuscular system" (p 166) 

It is important  to emphasize that point attractor dynamics 
provide a single account of  both posture and targeting move- 
ments Hence, a shift in the equilibrium posltaon (correspond- 
ing to a g~ven postural configuration) g0ves rise to movement 
(see e.g., Feldman, 1986). What, then, of rhythmleal movement, 
our major concern here? It is easy to see, m prmople ,  how a 
dynamical description might be elaborated to Include this case 
For example, a single movement to a target may be under- 
damped, overdamped, or cnucally damped, depending on the 
system's parameter values (for example, see Kelso & Holt, 
1980). A simple way to make the system oscillate would be to 
change the sign of  the damping coeificlent to a negative value. 
This amounts to inserting "energy ''~ into the system. However, 
for the motion to be bounded, an additional dissipative mecha- 
msm must be present m order to balance the energy input and 
produce stable limit cycle motion. This comblnataon of  linear 
negative damping and nonlinear dlSSlpaUve components com- 
prises an escapement function for the system that is autono- 
mous in the conventaonal mathematical sense of  a tame-inde- 
pendent forcing function. 

In the present research we adopt this autonomous description 
of rhythmical movement, though we do not exclude--on em- 

It is important to emphasize here that we use terms hke energy and 
dlsslpatzon m the abstract sense of dynamical systems theory (cf Jordan 
& Smith, 1977, Mmorsky, 1962) These need not correspond to any 
observable blomechamcal quanuttes 
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pincal grounds atone--the possibthty that forcing may occur in 
h time-dependent fashion Oscdlator theory tells us that nonlin- 
ear autonomous systems can possess a so-called penodw attrac- 
tor or hmR cycle; that is, all trajectories converge to a single 
cyclic orbit in the phase plane (x, x) Thus, a nontrivial feature 
of both periodic attractor dynamics and rhythmical movement 
(entirely analogous to the foregoing discussion of  point  attrac- 
tor dynamics and discrete movement) is stability m spite of per- 
turbations and different initial con&tions. 

In a set of experiments several years ago, we demonstrated 
such orbital stablhty (along with other behaviors such as mutual 
and subharmonm entrainment) m stuches of human cyclical 
movements (Kelso, Holt, Rubm, & Kugler, 1981 ) Although our 
data were consistent wRh a nonhnear hmlt cycle oscillator 
model for both single and coupled rhythmic behavior, no ex- 
plicit attempt to model the results was made at that time. More 
recently, however, Haken, Kelso, and Bunz (1985) have success- 
fully modeled the circumstances under which observed tranm- 
tions occur between two modes ofcouphng the hands--namely, 
antiphase motion ofrelatwe phase ~. 180", which revolves non- 
homologous muscle groups, and m-phase motion of relative 
phase ~ 0", m which homologous muscles are used The Haken 
et al (1985) nonhneafly coupled nonhnear oscillator model was 
able to reproduce the phase transmon, that is, the change in 
quahtative behavior from antiphase to m-phase coordination 
that occurs at a critical driving frequency, as the driving fre- 
quency (o~) was continuously scaled (see Kelso, 1981, 1984, 
MacKenzie & Patla, 1983). This model has been further ex- 
tended m a quantitatwe fashion to reveal the crucial role ofrela- 
twe phase fluctuations m provolong observed changes in behav- 
ioral pattern between the hands and to further identify the phe- 
nomenon as a noneqmhbrmm phase transition (Schoner, 
Haken, & Kelso, 1986). Remarkably good agreement between 
Schoner et al.'s (1986) stochastic theory and experiments con- 
ducted by Kelso and Scholz (1985) and Kelso, Scholz, and 
Schoner (1986) has been found 

In the present work we provide quantitative experimental re- 
suits pertinent to the foregoing modeling work of Haken et al. 
(1985) and Schoner et al. (1986) For example, although the 
Haken et al. (1985) model provided a quahtative account of 
decreases in hand movement amplitudes with increasing fre- 
quency, the actual function relating these variables was not em- 
pirically measured m earlier experiments nor was any fit of pa- 
rameters performed. A goal of this research Is to show how a 
rather simple dynamical model (or control structure)----requir- 
ing variations in only one system parameter--can account for 
the spatiotemporal behavior of the limbs acting singly and to- 
gether The experimental strategy was to have subjects perform 
cychcal movements m response to a metronome whose fre- 
quency was manipulated (m l-Hz steps) between 1 Hz and 6 
Hz The data reveal a stable and reproducible reciprocal rela- 
tion between cychng frequency and amphtude for both single 
and blmanual movements. This constramt between the spatial 
and temporal aspects of movement patterns revokes immedi- 
ately a nonhnear dynamical model (hnear systems exhibit no 
such constrmnt), the particular parameters of which can be 
specified according to kinematic observables (e.g., frequency, 
amphtude, and maximum velocRy). Though we make no 
clmms for the umqueness of the present model, we do show that 

other models can be excluded by the data, and we suggest ex- 
phclt ways in which uniqueness may be sought 

Method 

Subjects 

The subjects were 4 right-handed male volunteers, none of whom 
were prod for their servmes They mdwldually partlcapated m two exper- 
imental sessions, which were separated by a week Each sessaon con- 
s~sted of approximately 1 hr ofaetual data collection 

Apparatus 

The apparatus was a modlfieation of one described m detail on prew- 
ous occasaons (Kelso & Holt, 1980, Kelso et al, 1981) Essentially, it 
consisted of two freely rotating hand manlpulanda that allowed flexaon 
and extension about the wrist (radiocarpal) joint m the horizontal 
plane Angular displacement of the hands was measured by two DC 
potentiometers riding the shafts of the wrist pos~taoners The outputs of 
the potentiometers and a pacing metronome (see below) were recorded 
with a 16-track FM tape recorder (EMI SE-7000) 

Procedure 

Subjects were placed m a denUst's chair, their forearms rigidly placed 
m the wnst-posatiomng device, so that the wrist joint axes were directly 
m hne wRh the posmoners' vertieal axes Motion of the two hands was 
thus solely m the horizontal plane Vision of the hands was not ex- 
eluded 

Each experimental sessmn was diwded into two subsesmons In the 
first session, single-handed movements were recorded, followed by two- 
handed movements, this was reversed for the second session WRhm 
each subsesston, preferred movements were recorded, followed by met- 
ronome-paced movements For the preferred trials, subjects were told 
to move their wrists cychcally "at a comfortable rate" On the paced 
trials, subjects were told to follow the "beeps" of an audio metronome 
to produce one full cycle of motion for each beep. Pacang was provided 
for s~x different frequencies--- 1, 2, 3, 4, 5, and 6 Hz--presented m ran- 
dom order For both the preferred and paced conditions, subjects were 
not instructed exphc~tly concerning the amphtude of movement; for 
example, they were not told to move their wrists maramally 

For the single-hand subsesslon there were, therefore, 14 conditions, 
one preferred and six paced data sets bemg collected for each hand For 
the two-handed trmls, there were also 14 conditions, one preferred and 
six paced data sets being collected for each of two different movement 
patterns These blmanual patterns consisted of a mirror, symmetric 
mode, which revolved the simultaneous activation of homologous mus- 
cles and a parallel, asymmetric mode, whmh revolved simultaneous ac- 
tivation of nonhomologous muscle groups (see, e g, Kelso, 1984) Two 
trials of data were collected for each condition in each session For the 
preferred trials, 30 s of data were collected, while 20 s were collected at 
the pacang frequencms of 1-4 Hz, and 6 s-8 s at 5 Hz and 6 Hz, to 
mtmm~ze fatigue effects 

Data Reduction and Dependent Measures 

Follovang the expenmental sessions, the movement signals were digi- 
tized at 200 samples/second and smoothed wRh a 35-ms triangular win- 
dow Instantaneous angular velocity was computed from the smoothed 
chsplaeement data by means of the two-point central difference algo- 
rithm and smoothed vath the same triangular window (see Kay, Mun- 
hall, VaUlootis-Bateson, & Kelso, 1985, for dermis of the signal process- 
lng steps revolved) A cycle was defined by the occurrence of two (adja- 
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Table 1 
Mean Frequency, Amphtude, and Peak Veloctty for Smgle-Handed Trials 
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Frequency (Hz) Amplitude (degrees) Peak velocity (degrees/second) 

Left Right Left Right Left Right 

Condmtmon M % M % M % M % M % M % 

Preferred 204  38  204  33  4687 7 2  4688 6 4  31191 65  30708 61 
Paced 

IHz  100 6 9  100 4 9  51 17 58  5354 7 0  19404 85  18740 87  
2Hz 200  37  200  33  4311 76  4601 77  291 19 82  29862 78  
3Hz 300 4 7  300 4 0  3774 107 4050 8 1 358 17 9 4  38045 70  
4Hz  402  6.5 404  4.8 3864 107 3354 107 46331 9 0  41685 86  
5 Hz 5 19 7 8 5 14 4 9 32 82 13 7 33 35 9 6 540 37 9 8 522 10 7 6 
6Hz  633  6 9  601 6 6  2681 218 2783 129 51689 109 49933 107 

Note Means are collapsed across trials, sessmns, and subjects Percentages represent average within-trial cross-cycle coefliements of varlatton 

cent) peak extension events, which, along with peak flexmns, were 
identified by a peak-peakang algorithm. Peak velooty was measured 
using the same peak pmcker on the velocity data, the values reported here 
are summaries across both positive and negative velocity peaks Cycle 
frequency (in Hz) was defined as the inverse of the t~me between two 
peak extensmons, and cycle amplitude (peak-to-peak, in degrees) as the 
average of the extension-flexion, flexion--extension half-cycle excur- 
smons For the two-handed trials, the relative phase (or phase chfference) 
between the two hands was also computed on a cycle-by-cycle basis, 
using Yamanmshl, Kawato, and Suzukt's (1979) definilaon This Is a 
purely temporal measure and ms not computed from a motaon's phase 
plane trajectory (Kelso & Tuller, 1985) The measurement is based on 
the temporal location of a left peak extension within a cycle of right- 
hand movement as defined above In our convention, for the mirror 
mode, phase differences of less than 0* mchcate that the lett hand leads 
the right, and vmce versa for posllave values For the parallel, asymmetric 
mode, values of less than 180* mean that the left hand leads the right 
0 e ,  the left peak extension event Is reached prior to exactly 180"), val- 
ues greater than 180" mean that the right hand leads For qualitative 
comparisons between model-generated simulations and data, phase 
plane trajectories were also examined These were created by simulta- 
neously plotting transduced angular position against the derived instan- 
taneous velooty 

After obtaining these measures for each cycle, we obtained measures 
of central tendency (means) and varlablhty across all cycles of each trial 

Coefficients of vanatmn (CVs) were used as varlablhty measures for 
frequency, amphtude, and peak velooty to remove the effects of the 
frequency scahng on the mean data and thus to validly compare van- 
abthty data across the observed frequency range The standard dexaa- 
laon was used as the phase variability measure, because coefficients of 
varmt~on would be clearly inappropriate m comparing the two patterns 
of movement, whose mean phase differences were always around 0* and 
180" In the following Results sectmon are reported these within-trial 
summary data, because of the large number of cycles collected In under 
1% of the trials, a trial was lost because of experamenter error Thus, 
for statistical purposes, means across trials wRhm each experimental 
condition were used 

R e s u l t s  

The  means  and  var lab lh ty  measures  o f  f requency (m Hz), 
a m p h t u d e  (m degrees), peak  velocity (m degrees/second)  and  
relative phase  (for the  two-handed  c o n d m o n s )  are presented m 
Tables 1 to  4, collapsed across trials, sessions, and  subjects. 
Bo th  preferred  and  paced da ta  are inc luded m these tables  

Preferred Condtttons 

Frequency, Amphtude, and Peak Velocity 
For bo th  single and  b lmanua l  preferred movements ,  repeated 

measures  analyses o f  varmnce  (ANOVAS) were pe r fo rmed  on the 

Table 2 
Mean Frequency, Amphtude, and Peak Veloctty for Homologous (Mtrror) Two-Handed Trials 

Frequency (Hz) Amphtude (degrees) Peak velocity (degrees/second) 

Lett Right Left Right Left Right 

Condmon M % M % M % M % M % M % 

Preferred 1 90 7 3 1 90 6 6 41 49 4 0 47 05 3 7 252 93 7 3 280 72 6 6 
Paced 

IHz  100 39  100 4.0 5271 6 2  5685 6 0  18830 8 6  19660 82  
2 Hz 2 00 3 5 2 00 3 3 38 80 9 6 42 20 8 1 260 85 9 4 280 91 7 5 
3Hz 301 53  300  4.0 3315 110 3585 9 6  31845 9 4  34551 81 
4Hz  408  8 1 4.08 5 7 3050 14 1 3295 11 6 387 18 9 5  41544 9 0  
5Hz 529 9 7  525 55  2612 176 2964 135 43064 124 47490 112 

Note Means are collapsed across trmls, sessions, and subjects only for the stable data Percentages show average within-trial, cross-cycle coet~clents 
of variation 
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Table 3 
Mean Frequency, Amphtude, and Peak Velocity for Nonhomologous (Parallel) Two-Handed Trials 

Frequency (Hz) Amphtude (degrees) Peak velooty (degrees/second) 

Left Right Left Right Left Right 

Condmon M % M % M % M % M % M % 

Preferred I 56 38 1 56 4 1 5230 57 5750 47 28857 68 31439 49 
Paced 

IHz 101 42 101 39 5322 65 5479 57 19621 93 20196 77 
2Hz 202 44 200 38 4641 93 4821 77 31615 78 32546 73 

Note Means are collapsed across trmls, sessmns, and subJeCts only for the stable data Percentages represent average wRhm-tnal, cross-cycle coeffi- 
cients of vanatmn 

within-trial means, and variability measures were obtmned for 
frequency, amplitude, and peak velocity The design was a 2 • 
3 • 2 factorial, vath hand (left, right), movement condition (sin- 
gle, mirror, and parallel), and session as factors. 

Mean data Looking first at frequency means, the only effect 
found was for movement condition, F(2, 6) = 9 14, p < .05. Post 
hoc Scheff6 tests show that m the single (2.04 Hz) and mirror 
(1 90 Hz) mode the preferred frequencies were similar to each 
other but higher than m the parallel mode frequency (1.56 Hz). 
The two hands did not differ m preferred frequency m any of 
the three movement condmons WRh regard to amplitude 
means, a mam effect for hand, F( l ,  3) = 14.16, p < .05, and a 
Hand • Mode mteractmn, F(2, 6) = 5.81, p < .05, occurred. 
There was no sigmficant movement condmon effect, suggesting 
that the three movement condmons assumed the same amph- 
tude m the preferred case. However, the interaction indicated 
that the amphtude means for the single conchtions were identi- 
cal for the two hands but differed m both blmanual conditions, 
the left hand assuming a lower amplitude than the right m each 
case No s~gnificant mam effects or interactions were found for 
the preferred peak velocity data. 

Vartabdtty data ANOVAs performed on the frequency and 
peak velocity wlthln-trml coefficients of variation revealed no 

Table 4 
Mean Relattve Phase for Homologous (Mzrror) and 
Nonhomologous (Parallel) Two-Handed Trials 

Relatwe phase (degrees) 

H o m o l o g o u s  Nonhomologous 

Condmon M SD M SD 

Preferred 6 46 11 36 185 28 11 09 
Paced 

1 Hz 3 60 6 75 177 75 9 54 
2 Hz 10 44 10 84 185 99 16 65 
3Hz 6 19 1800 188 82 5249 
4 Hz 4 00 26 36 193 64 93 46 
5 Hz -5  81 42 53 181 68 104 02 
6 Hz 5 33 51 91 168 88 110 38 

Note Means (M) are collapsed across trials, sessmns, and subjects Stan- 
dard devmtmns (SD) are average within-trial, cross-cycle SDs 

effects. For the amplitude CVs, however, there was a significant 
effect for movement condition, F(2, 6) = 5 17, p < .05. Post hoc 
tests showed that single-hand amphtudes were more varmble 
than parallel amplitudes, which were more variable than those 
for mirror movements. 

Relative Phase 

For the blmanual movement conditmns, repeated measures 
ANOVA$ were performed on the w~thin-trml means and stan- 
dard devmtmns of the relative phase between the two hands 
The design was a 2 • 2 factorial, Coordlnalave Mode (mirror 
and parallel) • Session. The only effect observed for phase was 
mode, F(I ,  3) = 13756.6, p < .0001, showing that the subjects 
were indeed performing the task properly, produong two das- 
tract phase relations between the hands The 95% confidence 
interval for the mirror mode was 6.56" _+ I 1.34 ~ and for the 
parallel mode, 185.28" _ 9.93"; the intervals overlap with the 
"pure" modes of 0* and 180 ~ respectwely (although m both 
modes the right hand tends to lead the left). There were no 
effects or mteractaons for phase variability m the preferred con- 
dilaons. 

Metronome-Paced Condtttons 

As can be seen in Tables 1-4, the mampulatlon of movement 
frequency had a profound effect on almost all the measured 
observables With increasing frequency, amplitude decreased, 
whereas peak velocity and all variability measures appeared to 
increase. There were some apparent chfferences among the 
three movement condmons as well, although the two hands be- 
haved quite similarly. Valid comparisons among the experimen- 
tal conditions on the kinematic variables of frequency, ampli- 
tude, and peak velocity can be made, however, only when it is 
estabhshed that subjects are actually performing the blmanual 
tasks in a stable fashion. Looking at Table 4, one can see that 
the phase variability of the two modes mcreased qmte rapidly 
wRh increasing frequency. 

In a 6 • 2 • 2 factorial design, with pacing frequency (1-6 
Hz m l-Hz steps), coordmatwe mode (mirror and parallel), and 
sessmn as factors, the only effect observed on the mean relative 
phase data was mode, F( 1, 3) = 233.01, p < .001, and the means 
observed across all pacing frequencies were 4 21 ~ and 182 93" 
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Ftgure I Amphtude (m degrees) and peak-velocity (m degrees/second) individual trml data for the 1-5 Hz 
pacing frequenoes, and means within each frequency Left panel single-handed movements Raght panel 
mirror-mode movements 

In the mirror and parallel modes, respectively Apparently the 
two criterion phase angles are approximated, on the average, 
within trials However, effects for pacing frequency, F(5, 15) = 
124.91, p < .0001, mode, F( l ,  3) = 265 75,p  < .001, and their 
interaction, F(5, 15) = 18.24, p < .00 l, were found on the with- 
m-trial relative phase standard deviations. The interaction was 
consistent with both main effects: Variability in phase increased 
with increasing frequency for both modes, but the parallel 
mode's variability Increased much faster than the mirror 
mode's Note, in Table 4, the order of magnitude increase in 
phase variability in the parallel mode between 2 Hz and 3 Hz 
A comparable degree of  phase variability in the mirror mode 
is not evident until the 6-Hz pacing condition This result is 
consistent with other findings (e.g., Kelso, 1984; Kelso & 
Scholz, 1985) that the parallel mode is highly unstable between 
2 Hz and 3 Hz for similar movements, and a transition to the 
mirror mode is frequently observed above that frequency. 

The foregoing pattern of phase varmbility suggests, therefore, 
that we perform two separate analyses on the remainder of the 
paced data in order to make comparisons only within the stable 
regions of  behavior. A reasonable criterion for phase stability is 
+_45* Thus, we now report (a) the analyses comparing mirror 
mode and smgle-hand behavior from 1 Hz to 5 Hz and (b) the 
analyses on all three movement con&tlons for 1 Hz and 2 Hz. 

Single.Hand Versus Mirror-Mode Movements, 1-5 H z  

For single-hand and mirror-mode paced movements, re- 
peated measures ANOVAs were performed on the within-trial 
means, and variability measures were obtained for frequency, 
amplitude, and peak velocity. The design was a 5 • 2 • 2 • 2 

factorial, with pacing frequency (1-5 Hz in l-Hz steps), hand 
(left, right), movement condmon (single and mirror) and ses- 
sion as factors 

Mean data With regard to the observed frequency means, 
the pacing frequency was, as expected, a highly significant 
effect, F(4, 12) = 1117 76, p < 0001 The only other effect pres- 
ent was a weak three-way interaction, Session • Hand • Pacing 
Frequency F(4, 12) = 4 51, p < 05, indicating some very minor 
fluctuations in observed frequency. The main feature of  this in- 
teraction is a simple effect for mode at the 3-Hz pacing fre- 
quency, F(2, 6) = 9.02, p < 02, which was observed for none 
of the other pacing frequencies 

For the amplitude means, the main effect of pacing frequency, 
F(4, 12) = 9.51, p < 005, shows that amplitude decreased with 
increasing frequency Three of the 4 subjects' linear corre- 
lations between amplitude and frequency were significant, 
(Pearson rs = - .50 ,  - 86, and - 87, ps < 001), while the 4th 
subject's amplitude trend, although decreasing, failed to reach 
significance (r = - 18, p = .  12) The only other effect on ampli- 
tude was a weak three-way interaction, Mode • Hand • Pacing 
Frequency, F(4, 12) = 3 30, p < 05, chiefly the result of  the left- 
hand amplitude in the single case at 5 Hz being slightly higher 
than the rest of  the data at that frequency Otherwise, no differ- 
ences were found, the two movement conditions exhibiting 
much the same amplitude across the entire frequency range 
Pacing frequency, F(4, 12) = 8.26, p < .005, was the only sig- 
nificant effect on the peak velocity means; the latter increased 
with Increasing frequency for both movement conchlaons 

The main effect of pacing frequency found for both ampli- 
tude and peak velocity re&cares that each covaries with fre- 
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quency of movement, but an interesting relation exists between 
the two W~th respect to the means across each pacing fre- 
quency, amplitude and peak velocity exhibited an mverse rela- 
tion (see Figure 1) for both the single-hand and mirror move- 
ments (r = - 986 for the single hands, r = - 958 for the mirror 
movements, on the overall means; N = 5 and p < .01 for both 
correlations) At first, thzs result seems to contradict a wealth 
of findings on this relation which reveal that peak velocity scales 
dtrectly w~th movement amplitude (see Kelso & Kay, in press, 
for a review) However, an analysis of the individual trial data 
within a gwen pacing frequency condition indicates that peak 
velocity and amplitude do indeed scale directly with each other 
(see F~gure 1) Pearson's r correlations for each of the movement 
frequencies are listed m Table 5, and range from 772 to .997 
(p < 01 in all cases) Slopes of the lines of best fit for peak 
velocity as a function of amplitude are also reported, none of 
the intercepts were significantly dafferent from zero. 

Vartabthty data The wtthln-trlal coetficlents of variation 
(CVs) for observed frequency showed significant effects of pac- 
ing frequency, F(4, 12) = 13.68, p < .0005, hand, F(1, 3) = 
12 59, p < 05, and the Pacing Frequency • Mode interaction, 
F(4, 12) = 5 92, p < .01 Overall, the left hand was more vari- 
able m frequency than the right (CVs of 6 0% and 4 4%, respec- 
tively) Analysis of simple main effects showed that pacing fre- 
quency was a s~gmficant effect for both single-hand and mirror 
movements, F(4, 12) = 3.989, p < 05, and F(4, 12) = 33 24, 
p < 0001, respectively, but that the only difference between the 
two movement conditions occurred at 3 Hz, F(I,  3) = 20.18, 
p < .05. At that pacing frequency, the mirror mode was shghtly 
more variable than the single-hand movements. 

The only significant effect on amplitude CVs was pacing fre- 
quency, F(4, 12) = 29.10, p < 0001 Amplitude variability in- 
creased very consistently with increasing movement frequency 
(see also Figure 1, which shows the cross-trial variability in 
amplitude as well as in peak velocity). For the peak velocity 
CVs, session, F(1, 3) = 13 10, p < 05, and pacing frequency, 
F(4, 12) = 3.51, p < .05, were significant effects; variability in 
the second session was lower than that in the first (the only clear- 
cut practice effect in the experiment), and higher frequency 
movements were consistently more variable on this measure 

Compartson of  All Three Movement Condmons at I Hz  
and 2 Hz 

For all three movement conditions, repeated measures AN- 
OVAS were performed on the within-trial means, and variability 
measures were obtained for frequency, amplitude, and peak ve- 
locity The design was a 2 • 2 • 3 • 2 factorial, with pacing 
frequency ( 1 Hz and 2 Hz), hand (left, right), movement condi- 
tion (single, mirror, parallel), and session as factors. 

Mean data For the observed frequency, pacing frequency, 
F(I, 3) = 32708.6, p < 0001, and mode, F(1, 3) = 6 64, p < 
05, were significant effects, with the parallel mode being 
slightly faster than the other two movement conditions overall. 
The difference, however, was less than 1% of the pacing fre- 
quency For amplitude, no main effects or interactions were 
found; the three movement conditions assumed a single overall 
amphtude, and amplitude differences were not apparent across 
the two observed frequencies For peak velocity, pacing fre- 

quency, F(1,3) = 19 32, p < 05, and its interactions with move- 
ment condition, F(2, 6) = 5 92, p < 05, and hand, F(I,  3) = 
15.18, p < 05, were significant A simple main effects analysis 
for the first of these interactions indicated that the pacing fre- 
quency effect was significant for the single and parallel move- 
ments but not for the mirror mode. In addition, the movement 
conditions differed at 2 Hz (order from least to greatest peak 
velocity mirror, single, parallel) but not at 1 Hz The second 
interaction was consistent with the associated main effects--the 
pacing frequency effect was significant for both hands, and no 
simple effects for hand appeared However, at 2 Hz the right 
hand showed slightly greater peak velocities than the left. As 
observed for single-hand and mirror movements (see above), 
amplitude and peak velocity covarled directly in the parallel 
movements, within each pacing frequency (see Table 5). 

Varzablhty data For observed frequency, no main effects or 
interactions were found for the w~thln-trlal CVs. For amplitude 
CVs, the Movement Condition • Hand interaction ~vas slgmfi- 
cant, F(2, 6) = 13 51, p < 05, yet no simple main effects were 
found at any level of the two independent variables However, 
for the left hand, both blmanual conditions were more variable 
than single-hand movements, whereas the reverse was true for 
the right. For peak velocity CVs, the only effect was a weak 
three-way interaction of movement condition, hand, and fre- 
quency, F(2, 6) = 7.87, p < .05 

Quahtattve Results--Examples of  Phase Portratts 

The shapes of the limit cycle trajectories can be very informa- 
tive about the underlying dynamics. Figure 2 shows typical 
phase plane trajectories for single-hand movements; a section 
of one trial is displayed for each of the pacing frequencies from 
1 Hz to 6 Hz, along with the trajectories of the model (see next 
section on limit cycle models) at the same frequencies. As 
shown in the figure, trajectory shape varies with movement fre- 
quency: Higher frequency movements appear to be somewhat 
more slnuso~dal (i.e., more elllp)acal on the phase plane) than 
lower frequency ones This was especially apparent in going 
from 1 Hz to 2 Hz. Some subJeCts showed this tendency less 
than others, but the shapes of the trajectories did not appear to 
differ among the three movement condaaons. Note also that the 
velocity profiles are unlmodal in these rhythmical movements, 
a result also observed in recent speech (Kelso et al., 1985) and 
discrete arm movements (e.g., Blzzl & Abend, 1983; Cooke, 
1980; Vlvlam & MeCollum, 1983). 

Ltmtt Cycle Modelmg 

In this section we first present a limit cycle model that ac- 
counts for a number of observed kinematic characteristics of 
rhythmical hand movements, including the observed ampli- 
tude-frequency and peak velocity-frequency relations across 
conditions, as well as the peak veloclty-amphtude relation 
w~thln a gaven pacing condition. In addmon, an adequate gener- 
alization of the limit cycle model to coordinated rhythmxc band 
movements is presented (Haken et al., 1985), and conclusions 
are drawn from comparisons vath the experimental data. A dis- 
cussion of the assumptions that are implicit in our modeling 
strategy is deferred to the General Discussion 
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Table 5 
Correlatmns of Amphtude and Peak Velocity, Within Each Pacmg Frequency, for Stable Frequencies 
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Condmon 

Mirror Parallel Single 

Frequency r m N r m N r m N 

l Hz 772 344 32 903 3 98 30 733 4 62 26 
2Hz 970 6 08 32 972 6 19 32 967 6 58 32 
3Hz 995 9 09 32 992 9 15 32 
4Hz 997 11 77 33 996 12 82 36 
5Hz 991 1594 34 975 16 86 28 

Note r = Pearson's r, m = slope of the hne of best fit (peak velocity as a function ofamphtude), N = number of trials for each correlaUon 

As noted earlier by Haken et al. (1985), a comblnatmn of two 
well-known limit cycle oscillators is a strong candidate to model 
the observed monotonous decrease of amplitude as a function 
of frequency. These two osollators are the van der Pol (van der 
Pol, 1922) and the Rayleigh osollator (Raylelgh, 1877/1945) 
The first Is described by an equatmn of motion of the following 
form: 

x +  o.x+ ,~x~x+ J x  = 0, (1) 

where a, % and ~02 are constants. For a < 0 and 3' > 0, th~s 
equatmn has a limit cycle attractor. In a phase portrmt m the 
(x, x)-plane this means that there is a closed curve on which the 
system rotates (the hmlt cycle) and to which all trajectories are 
attracted after a sufliemntly long transient ume. For [al ~ o~ the 
frequency of oscillatmn on and near the limit cycle is, to a good 
approxlmatmn, just w (see Mmorsky, 1962, Section 10.6). Fig- 
ure 3 illustrates this situation schematacally. 

An analytic description of the limat cycle can be given af the 
slowly varying amphtude and rotating wave approximations are 
used (Haken et a l ,  1985, see Appendix A for a brief summary 
of the methods and the results) The amplitude of the limit cy- 
cle, which m this approximation is a harmonic oscfllataon, is 
found to be 

A = 2 l~all"/ (2) 

and is andependent of the frequency w. Thus the van der Pol 
oscillator can account for the antercept of the amplitude-fre- 
quency relatmn but not for its monotomc decrease. The Ray- 
leigh oscillator has the equation of motaon, 

x + a x  + 3x 3 + J x  = 0, (3) 

and possesses a hmit cycle attractor for a < 0, 3 > 0, again w~th 
an oscillatmn frequency o~ as long as lal ~ o,. Using again the 
two above-mentmned approxlmauons, we obtain the amplitude 
of this hmit cycle as 

A = ( 2 / w ) ~  (4) 

(see Haken et al., 1985). 
The decrease of amplitude w~th frequency observed m the 

data is captured by this expression, although the dwergence of 
Equation 4 at small frequency as dearly nonphysical. 

It ~s easy to Imagine that a combmatmn of both types ofoscd- 
lators may provide a more accurate account of the experamental 
results Therefore, let us consider the following model. 

x + ax + Bx 3 + 7x2x + w2x = 0, (5) 

which we refer to from now on as the "hybrid" oscillator For 
B, ~' > 0, a < 0 this yields again a hmlt cycle attractor of fre- 
quency w (for lal "~ w) with amplitude (agmn in the approxama- 
tlons of Appendix A) 

A = 2Vlal/(33w 2 + "r) (6) 

This function exhibits both a hyperbolic decrease in amplitude 
as well as a finite antercept at zero frequency and accounts quah- 
tattvely for the experimental data. In Figure 4 we have plotted 
the amplitude A of the hybrid model together w~th the experi- 
mental data as a functmn of frequency The two parameters, B 
and % were fitted (using a least squares fit, see Footnote 2) while 
a was chosen as a = -0 .05 • wp~r(= 641 Hz) without a further 
attempt to minimize deviatmns from the data (The values for 
3 and ~, were 3 = .007095 Hz 3, ,y = 12 457 Hz, where A was 
taken to be of the same scale as the experimental degree values.) 
The choice of a as consistent with the slowly varying amplitude 
approximataon (for which we need lal '~ o~; see Appen&x A) 
and amounts to assuming that the nonlinearity is weak (see Ap- 
pen&x B and General Discussion below). For illustrative 
purposes, the corresponding least squares fits for the van der Pol 
and the Raylelgh oscillators are also shown In Figure 4 Note 
that only one fit parameter, 3 or 3' respectively, was used for 
these fits. It is obvious how each of the two foregoing models 
accounts for only one aspect of the experimental observaUons, 
and the hybrid model accounts for both. In summary, the model 
parameters were determined by (a) identifying the pacing fre- 
quency with w (which is a good approximation for I~1 ~ o0; (b) 
choosing a = - 0  05 • wp~f; and (c) finding 3 and 3' by a least 
squares fit of the amplitude-frequency relatmn. A more stnn- 
gent evalualaon of the parameters is possible if more experimen- 
tal Information IS avmlable (see the discussmn of the assump- 

The parameters 3 and 3, were found by means of a pseudo-Gauss- 
Newton search for the parameters, using the single-hand observed fre- 
quency and amphtude trial data (N = 192) The least squares criterion 
was the mlnlrmzatlon of squared residuals from the model amplitude- 
frequency function stated in Equation 6 The overall fit was found to be 
significant, F(2, ! 90) = 35 3 t 4, p < 0001, and the overall R 2 was 2748, 
standard dewatlons for 3 and ~, were 001025 Hz 3 and I 0129 Hz, re- 
spectwely 
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Ftgure 3 Examples of phase plane trajectories for a hmR cycle 

where amphtude varies across trials (see Figure 1 and Table 5). 
Note that peak-to-peak amplitude equals 2A so that the slopes 
reported m Table 5 are ~/2 = ~r • Frequency. An additional 
piece of experimental reformation concerns the peak velocity- 
frequency relation (see Table 1 and Figure 5), the theoreUcal 
prediction for which results if we insert Equation 6 into Equa- 
tion 7 as follows: 

V. = 2wVIc~[/(33~ 2 + "y) (8) 

This theoretical curve is also included in Figure 5 It is impor- 
tant to emphasize that all parameters have been fixed pre- 
viously. Clearly, the match between model and experiment is 
quite close. 

We now turn to the modehng of the two-handed movements. 
The essential idea is to couple two single-hand oscillators of 
type expressed in Equation 5. Assuming symmetry of the two 
hands, Haken et al., (1985) have established the most simple 

Figure 2 Phase plane trajectories from 1 Hz to 6 Hz Left panel repre- 
sentat|ve examples from the collected data set of 1 subject Right panel- 
trajectories of the hybrid model (Equation 5), simulated on dlgRal com- 
puter 

Uons in General Discussion below) Note, however, that even 
on this level of sophistication the model accommodates several 
further features of the data For example the peak veloclty-am- 
phtude relation gaven by the limit cycle model is the simple rela- 
tion 

V. = ~A. (7) 

This relation holds whenever the trajectory is close to the limit 
cycle Thus If trajectories fluctuate around the limit cycle (due 
to ever-present small perturbatlons), we expect the scatter of the 
peak velocity-amphtude data to lie on a strmght line of slope ~0. 
Moreover, thls same relation is shown to hold in the situation 

Fzgure 4 Frequency (m Hz) versus amphtude (m degrees) for the single- 
handed data and the curves of best fit for the van der Pol, the Raylelgh, 
and the hybrid osollators (The observed data are the mean values at 
each pacing frequency ) 
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Ftgure 5 Frequency (m Hz) versus peak velocity (m degrees/second) 
for the single-handed data and the corresponding functmn for the hy- 
brid model (see Equatton 8), as derived from the amphtude-frequency 
data (The observed data are the mean values at each pacmg frequency ) 

coupling structure that accounts for both the in-phase (sym- 
metric/mirror) and the antlphase (asymmetric/parallel) coor- 
dmatwe modes as well as the transmon from an asymmetric to 
symmetric organizatmn as frequency is scaled (see introduc- 
tion) This coupling structure has the following explicit form 

Xl "~- g(Xl ,  X l )  = ( X l  - -  x2)[a + b(xl - x2) 2] (9) 

x2 + g(x2, x2) = (x2 - xOIa + b(x2 - x021, (10) 

where 

g(x, x) = aX + l~x3 + "tx2x + o~2x, (11) 

and a and b are coupling constants. Using again the approxima- 
tions of  Appendix A (see Haken et al., 1985, for the calcula- 
tions), one obtmns the amplitudes 

~ ' 3  lal + a(1 - cos0) 
a '  = A 2 = 2  B J  + 3 , -  3 - - ~  ~ c o - " ~ - - b c o s 2 , "  (12) 

In this expression r = r - $1 Is the relative phase of  the two 
oscillators, which is r = +_ 180" for the asymmetric motion and 
r = 00 for the symmetric motion. Note that for a = b = 0 we 
recover the amplitude of  the single hybrid oscillator (see Equa- 
tion 6) Indeed, the experimental observation that the ampli- 
tudes of  the two-handed modes of  movement did not differ sig- 
nificantly from the single-hand amplitudes leads us to the con- 
clusion that the coupling Is weak in the sense that a ,~ a and b ,~ 
3, This is an interesting result in that it shows that even when 
the coupling Is much weaker than the corresponding dissipative 
terms of  the single-hand oscillators (which guarantee a stable 
amphtude-frequency relataon), phase loclang and transitions 
within phase locking can occur This may rationalize, to some 
degree, the ubiquity of  phase locking in the rhythmical move- 
ments of  animals and people and is worthy of  much more inves- 
tigation. 

A final remark concerns the preferred frequencies chosen by 
subjects in the single-hand condition compared with the two 

coordinative modes The observation was that the preferred fre- 
quency was always lower m the asymmetric mode than in either 
the symmetric mode or the single-hand movement conditions, 
which were roughly equal. As mentioned before, a transition 
takes place from the asymmetric mode to the symmetric mode 
as frequency is scaled beyond a certain crmcal value. The cou- 
pled oscdlator model accounts for that transitmn in the sense 
that the statmnary state 4, ~-- _+ 180* for the relatwe phase be- 
comes unstable (Haken et al., 1985). In fact, the stability of  that 
state decreases when frequency increases, as exhibited by the 
relaxation rate of  this state (see Schoner et a l ,  1986, and Gen- 
eral Discussion). A simple analysis reveals that the preferred 
frequency m the asymmetric mode is shifted in such a way that 
the stability of  the relative phase is larger than it would be ffthe 
preferred frequency of the single-hand oscillation were mare- 
tamed This observation may well be important for a fuller un- 
derstanding of  the preferred frequencies, in terms, perhaps, of  
variational pr inoples  such as minimization of  energy (see Hoyt 
& Taylor, 1981; Kelso, 1984) 

G e n e r a l  Discussmn 

In this article we have shown how a low-dimensional descrip- 
tion in terms of  dissipative dynamics can accoun t - -m a unified 
manner- - for  a number of  observed facts. First, the present "hy- 
br id"  model includes the well-known mass-spring characteris- 
tic of  postural tasks (see introduction). That is, when the hncar 
damping coeffioent, a, is positive, the model exhibits a stable 
equilibrium position in the resting state (x = 0, x = 0 is a point 
attractor). Second, when the sign of  the linear damping coeffi- 
cient is negative, this equilibrium point is unstable, and an os- 
ol la tory solution with a frequency determined by the linear re- 
stonng force, w2x, is stable and attracting The persistence of the 
oscillation and its stability is guaranteed by a balance between 
excitation (vm a x  with negative damping coefficient, a < 0), 
and dissipation (as indexed by the nonlinear dissipative terms, 
~x  3 and "rx2x). This balance determines the hmlt  cycle, a pen- 
odic attractor to which all paths m the phase plane (x, x) con- 
verge from both the inside and the outside. For example, l f x  or 
x are large, corresponding to a condition outside the hm~t cycle, 
the dissipative terms dominate and amplitude will decrease. If, 
on the other hand, x and x are small, the hnear exc~tataon term 
dominates and amplitude will increase (see Figure 3) Third, 
oscillatory behavior is systematically modified by specific pa- 
rameterizatmns, such as those created by a pacing manipula- 
tion. The model accounts for the amplitude-frequency and 
peak velocity-frequency relations with a simple change in one 
parameter, the linear stiffness o~ 2 (for unit mass). Further sup- 
port for the latter control parameter comes from the direct scal- 
ing relation (observed within a paong  condition) of  peak veloc- 
ity and ampl i tude- -a  relation that is now well established m 
a variety of  tasks (e.g, Cooke, 1980; Jeannerod, 1984; Kelso, 
Southard, & Goodman,  1979; Kelso et al., 1985; Ostry & Mun- 
hall, 1985; Vlvlanl & McCollum, 1983). Thus, a number ofki-  
nematm characteristics and their relations emerge from the 
model's dynamic structure and parametenzataon. Fourth, and 
we believe importantly, the same oscillator model for the indi- 
vidual l imb behavior can be generalized to the case of  coordi- 
nated rhythmic action A suitable coupling of  limit cycle (hy- 
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bnd) oscillators gives rise to transitions among modes of  coordi- 
nation when the pacing frequency reaches a critical value 
(Haken et al., 1985; Kelso & Scholz, 1985; Schoner et al., 1986) 
Indeed, a number ofaddmonal phenomena can now be accom- 
modated, including the "seagull effect" observed by Yamanishi, 
Kawato, and Suzuki (1980) and Tuller and Kelso (1985, see 
Kelso, Schoner, Scholz, & Haken, 1987, Section 6). 

In summary, the model offers a synthesis of  a variety of  quite 
chfferent movement behaviors that we have simulated explicitly 
on a digital computer (see Figure 2). That is, a successful imple- 
mentation of  the model has been effected that is now subject to 
further controlled experimentation. One appealing aspect of  
the model is that it formalizes and extends some of  Feldman's 
(1966) early but influential work (see, e.g., Bmzi et al., 1976; 
Cooke, 1980; Kelso, 1977; Ostry & Munhall, 1985; Schmidt & 
McGown, 1980). Feldman (1966) presented observations on 
the execution of  rhythmic movement that strongly suggested 
that the nervous system was capable of  controlling the natural 
frequency of  the joint using the so-called mvanant characteris- 
ucs- -a  plot of  joint angle versus torque (see also Berkenblit, 
Feldman, & Fukson, 1986, Davis and Kelso, 1982). But he also 
recognized that "a certain mechanism to counteract damping 
in the muscles and the joint" must be brought into play, in order 
to "make good the energy losses from friction in the system" 
(Feldman, 1966, p. 774). Our model shows--m an abstract 
sense--how excitation and dissipation balance each other so 
that stable rhythmic oscdlations may be produced 

On the other hand, m modeling movement in terms of low- 
dimensional, nonlinear dynamics, we have made certain as- 
sumptions that will now be addressed, because they require ad- 
ditional experimental test. For reasons of  clarity we list these 
modeling assumptions systematically. 

1. EqmfinalRy. This is a pivotal issue of  the entire approach 
The very fact that the oscillatory movement pattern can be 
reached reproduobly from uncontrolled initial conditions indi- 
cates--as far as the theory is concerned--that (a) a description 
of  the system dynamics in terms of  a single variable (a displace- 
ment angle about a single rotation axis) and its derivative is 
sufficient--that is, there are no hidden dynamical variables that 
influence the movement outcome--and that (b) the modeling 
in terms of  a low-dimensional description must be dissipative 
in nature (allowing for attractor sets that are reached indepen- 
dent of  imual condiuons). An experimental test of  the equlfi- 
nahty property consists of  studying the stabdity of  the move- 
ment pattern under perturbauons. Although such stability was 
observed in earlier studies (Kelso et al., 1981), a much more 
systematic investigation is now required. 

2 Autonomy. A further reduction in the number of relevant 
variables is possible through the assumpuon of  autonomous 
dynamics. Nonautonomous forcing--as menUoned in the m- 
troductaon---essentially represents one additional variable, 
namely, tame itself. Apart from the conceptual advantages dis- 
cussed in the introduction, there are experimental ways to test 
this assumption. One such method consists of  studying phase 
resetting curves m perturbauon experiments (Wmfree, 1980). 
For example, m a system driven by a Ume-dependent forcing 
function (e g., a driven damped harmonic oscillator), perturba- 
tions will not introduce a permanent phase shift. On the other 
hand, if consistent phase shifts are observed in the data, the 

rhythm cannot be due fundamentally to a nonautonomous 
driving element 

A strong hne of empirical support for the autonomy assump- 
tion comes from the transition behavior m the bimanual case, 
as frequency Is scaled (Kelso, 1981, 1984; Kelso & Scholz, 
1985). Here autonomous dynamics were able to account for the 
transition behavior in some detad (Haken et al., 1985; Schbner, 
et al. 1986). Note also that during the transiUon one or both of  
the hands must make a shift in phase, a result that would require 
a not easily understood change in the periodic forcing func- 
tion(s); that is, one or both "timing programs" would have to 
alter m unknown ways to accomplish the transition 

3 MimmalRy The effective number of  system degrees of 
freedom can be further limited by the requirement that the 
model be minimal m the following sense. The attractor layout 
(i.e., the attractors possible for varying model parameters) 
should include only attractors of  the observed type In the pres- 
ent single-hand case, for example, the model should not contain 
more than a (monostable) hmit cycle and a single fixed point 
(corresponding to posture). This limits the dynamics to those 
of  second order: Higher orders would allow, for example, 
quasipenodic or chaotic solutions (e.g., Haken, 1983), which 
have not been observed thus far 

The above considerations (eqmfinality, autonomy, and mini- 
mality) thus constrain the number of  possible models consider- 
ably. Explicitly, the most general form of the model given these 
constraints is 

x +f (x ,  x) = 0 (13) 

We can illustrate the relation of  the hybrid model to the general 
case (Equation 13) by expanding f i n  a Taylor series (assuming 
symmetry under the operation x ---, -x ,  as inferred to be a good 
approximation from the phase portraits [Figure 2]), as follows. 

) f  = 602X Jr" tX.X "[- /3X 3 Jr- ' y X 2 X  -t- t~XX 2 "~- ~X 3 -t- 0(X 5, XX 4) (14) 

The hybrid model (Equation 5) then results from putting 
~ = ~ = 0  

Our discussion of  modeling assumptions can be drawn to a 
close by remarking that more detailed mformaUon about the 
system dynamics can now be gamed by asking experimental 
questions that are motivated by the theory. For example, in the 
model the system's relaxatzon time (1.e., the time taken to re- 
turn to the hmit cycle after a perturbation) is apprordmately 
the inverse of  a (see Appendix A), which a simple dimensional 
analysis reveals to be related to the strength of  the nonhneanty 
(see Appendix B). Thus, relaxation time measurements can give 
important information about how and by how much the system 
supphes and dissipates "energy" in its oscillatory behavior 
(where energy is to be understood as the integral along x of  the 
right-hand side of  Equation 14; see Jordan & Smith, 1977, and 
Footnote l). In another vein, R should be recognized that the 
model's dynamics are entirely deterministic in their present 
form. Stochastic processes, which have been shown quite re- 
cently to play a crucial role m effecang movement transitions 
(Kelso & Scholz, 1985; Kelso, Scholz, & Schoner, 1986; 
Schoner et al., 1986), have not been considered. However, these 
processes are probably present, as evidenced, for example, m 
the scatter of  amphtudes at a gwen osollaUon frequency. Sto- 
chastic properties of  rhythmic movement patterns may be ex- 
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plored independent ofperturbataon experiments by appropriate 
spectral analysis o f  the time-series data (see, e.g., Kelso & 
Scholz, 1985) Elaboratmn of  the model  to incorporate stochas- 
tic aspects is warranted and is a goal o f  further research. 

A final comment  concerns the physiologocal underpinnings 
of  our behaworal  results. With respect to the present model,  
such underpinnings are obscure at the moment .  Just  as there 
are many mechanisms that can achieve macroscopic ends, so 
too there are many mechantsms that  can instantiate hmi t  cycle 
behavior (for a br ief  r see Kelso & Tuller, 1984, pp 
334-338) The a~m here has been to create a model  that can 
reahze the stability and reproducibili ty o f  certain so-called 
"s imple"  movement  behaviors. Whatever  the physiological 
bases of  the latter, our  argument  ~s that  they must be consistent 
with low-&mensmnal  r dynamics.  There is not  neces- 
sarily a &cho tomy between the present macroscopic account,  
which stresses kanemaUc properties as emergent  consequences 
o f  an abstract dynamical  system, and a more reductmmstic  ap- 
proach, which seeks to explain macrophenomena on the basis 
of  microscopic properties. The basis for explanation o f  a com- 
plex phenomenon like movement  may be the same (Le., dynam-  
ical) at all levels wl thm the system, operative, perhaps, on 
different t ime scales 
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Appen&x A 

Limit Cycle Model Calculatmns 

In this appendix we illustrate some of  the basic tools employed in 
the model calculations in te rms  of  the van der Pol oscdlator For an  
introduction to such techmques  see, for example,  Haken (1983), Jordan 
and Smith (1977), and Mmorsky (1962) 

The  equation of  mot ion o f  the van der Poi oscdlator Is again 

x + ooc + ~,xEx + w2x = 0 (A1) 

For small nonhnearl ty  this ~s very close to a simple harmonic  oscillator 
o f  frequency w The idea here is that  the nonhnean t y  stabilizes the oscil- 
lation at a frequency not  too different from w This  suggests a transfor- 
mation from x(t)  and x(t)  to new variables, namely, an amphtude  r(t) 
and phase ~(t) (x(t) = 2r(t)cos[wt + ~(t)]) For ease of  computat ion,  we 
adopt complex notation 

x = B(t)e '~' + B*(t)e -'~t, (A2) 

where B is a complex h m e  dependent  amphtude  and B* is its complex 
conjugate In this new coordinate system we can define two impor tant  
approximations to the exact solution (which ~s unobtmnable  analyti- 
cally) The slowly varying amphtude  approximation amoun t s  to assum- 
ing [BI ~ ~0B and is used m a self-consistent manne r  (see below) The 
rotating wave approximation (RWA) consists of  neglecting terms higher 
in frequency than the fundamental ,  such as e 3'~', e -3'~', and so forth 
This means  that the anharmomcl ty  o f  the solution ~s neglected (this is 
why the RWA is sometimes also called the harmomc balance approxi- 
mation) See, for example,  Haken (1985) for a physical lnterpretanon 
of  these approxlmatmns  Using Equatmn A 1 and these two approxima- 
tions we obtain for Equation AI 

a B  "rlBI2B 
B (A3) 

2 2 

Introducing polar coordinates in the complex plane, 

B(t) = r(t)e 'r176 (A4) 

and separating real and imaginary parts we find 

ctr 3,r 3 
r . . . . . .  (A5) 

2 2 

= 0 (A6) 

Equation A5 for the radius r o f  the hml t  cycle (which here is a limit 
circle m the complex plane due to the RWA) has a form that makes  
visualization of  its solutions very s imple- -namely ,  it corresponds to the 
overdamped movement  of  a particle In the potential 

FtgureA1 Amphtude  potential, V, as a function o f  the amphtude ,  r, for 
the van der Pol oscillator, when a ~s less than  zero and greater than  zero 
(Umts  are arbitrary [see Appendix B] ) 

ar2 + 5' r4 
V(r) = 7 Y (A7) 

This  potennal  ~s illustrated in Figure A 1 for a > 0 and for a < 0, while 
"r > 0 m both cases 

Obvmusly  for "r > 0, the limit cycle of  finite amplitude,  

r0 = l a l / ~ ,  (A8) 

~s a stable, s ta tmnary solunon A movement  with an ampli tude close to 
r0 relaxes to the hm~t cycle according to 

r(t) = (r(t = O) - ro)e T M  + ro (A9) 

(as can be seen by h n e a n z a n o n  of  Equation A5 around r = r0) Thus  
this amph tude  vanes  slowly, as long as [al ,~ ~o Th~s is the above-men- 
honed  self-consistency condmon  The t ime (1/[al) Is called the relax- 
anon  t ime of  the amphtude  Equanon A6 of  the relatwe phase shows 
that  phase is marginally stable, that  is, does not  return to an  m m a l  value 
if perturbed Th~s can be tested in phase resetting exper iments  as ex- 
plained in the General DlSCUSSmn 
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A p p e n d i x  B 

D i m e n s i o n a l  A n a l y s i s  o f  H y b r i d ,  N o n l i n e a r  O s c i l l a t o r  

Here we perform a &menslonal analysis to compare &fferent contn- 
buUons to the oscillator dynamics To that end we estimate the &fferent 
forces m the equation of motion (Equation 5) by their amplitudes when 
the system ~s on the limit cycle The hnear restoring force behaves as 

w2x ~ J r 0 ,  (B 1) 

where r0 is the radms of the limit cycle The hnear (negatwe) damping 
IS 

a x  ~ awro (B2) 

The van der Pol nonlinearity ~s 

3"x2x ~ 3"wry, (a3) 

while the Raylelgh nonhnearlty scales as 

[3X 3 ~ l~w3r 3 ( B 4 )  

Usmg Equation 6, 
ro = 2Vlal/(3B~ 2 + 3") 

as the radms of the hybrid hmlt cycle, the strength of the nonlinear 
&ssipaUve terms relatwe to the linear restoring term is 

~x 3 + 3"x2x a ( O J  + 3") 
(BS) 

~2x "~ ~(3flw 2 + 3") 

For e~ther of the s~mple oscdlators th~s reduces to a /~  
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